Reaction-Diffusion Front Speeds in Spatially-Temporally Periodic Shear Flows

نویسندگان

  • James Nolen
  • Jack Xin
چکیده

We study the asymptotics of two space dimensional reaction-diffusion front speeds through mean zero space-time periodic shears using both analytical and numerical methods. The analysis hinges on traveling fronts and their estimates based on qualitative properties such as monotonicity and a priori integral inequalities. The computation uses an explicit second order upwind finite difference method to provide more quantitative information. At small shear amplitudes, front speeds are enhanced by an amount proportional to shear amplitude squared. The proportionality constant has a closed form expression. It decreases with increasing shear temporal frequency and is independent of the form of the known reaction nonlinearities. At large shear amplitudes and for all reaction nonlinearities, the enhanced speeds grow proportional to shear amplitude and are again decreasing with increasing shear temporal frequencies. The results extend previous ones in the literature on front speeds through spatially periodic shears and show front speed slowdown due to shear direction switching in time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of Kpp Type Fronts in Space-time Periodic Shear Flows and a Study of Minimal Speeds Based on Variational Principle

We prove the existence of reaction-diffusion traveling fronts in mean zero space-time periodic shear flows for nonnegative reactions including the classical KPP (Kolmogorov-Petrovsky-Piskunov) nonlinearity. For the KPP nonlinearity, the minimal front speed is characterized by a variational principle involving the principal eigenvalue of a space-time periodic parabolic operator. Analysis of the ...

متن کامل

Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds

We prove the existence of Kolmogorov-Petrovsky-Piskunov (KPP) type traveling fronts in space-time periodic and mean zero incompressible advection, and establish a variational (minimization) formula for the minimal speeds. We approach the existence by considering limit of a sequence of front solutions to a regularized traveling front equation where the nonlinearity is combustion type with igniti...

متن کامل

Variational Principle of KPP Front Speeds in Temporally Random Shear Flows with Applications

We establish the variational principle of Kolmogorov-PetrovskyPiskunov (KPP) front speeds in temporally random shear flows inside an infinite cylinder, under suitable assumptions of the shear field. A key quantity in the variational principle is the almost sure Lyapunov exponent of a heat operator with random potential. The variational principle then allows us to bound and compute the front spe...

متن کامل

Finite Element Computation of KPP Front Speeds in Cellular and Cat's Eye Flows

We compute the front speeds of the Kolmogorov-Petrovsky-Piskunov (KPP) reactive fronts in two prototypes of periodic incompressible flows (the cellular flows and the cat’s eye flows). The computation is based on adaptive streamline diffusion methods for the advection-diffusion type principal eigenvalue problem associated with the KPP front speeds. In the large amplitude regime, internal layers ...

متن کامل

A Variational Principle for KPP Front Speeds in Temporally Random Shear Flows

We establish the variational principle of Kolmogorov-Petrovsky-Piskunov (KPP) front speeds in temporally random shear flows with sufficiently decaying correlations. A key quantity in the variational principle is the almost sure Lyapunov exponent of a heat operator with random potential. To prove the variational principle, we use the comparison principle of solutions, the path integral represent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Multiscale Modeling & Simulation

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2003